lunes, 28 de noviembre de 2022

Modulación magnetotérmica del crecimiento de células nerviosas dependientes del calcio



El daño a los nervios conduce a discapacidades que afectan gravemente la calidad de vida. Los tratamientos disponibles no garantizan la regeneración completa de los nervios dañados ni la restauración de la función. La cirugía es invasiva e implica la implantación de autoinjertos diseñados para cerrar los espacios entre las terminaciones nerviosas. Sin embargo, tampoco proporciona una regeneración completa. El campo emergente de la neuromodulación magnética mediada por nanopartículas magnéticas (NPM) aprovecha una susceptibilidad magnética diminuta y la baja conductividad de los tejidos biológicos para enviar estímulos de forma inalámbrica a las células en las profundidades del cuerpo. Las NPM pueden diseñarse para convertir campos magnéticos en distintos estímulos físicos, incluidos calor, fuerza y cambios químicos detectados por el mecanismo de señalización celular.

 

Usando síntesis organometálica, los autores obtuvieron NPM monodispersas recubiertas con ácido oleico, de 21 ± 1 nm de diámetro (Fig. 1b). Luego las recubrieron con una capa adicional de copolímero de bloque anfifílico con un espesor promedio de 4 nm, para conferir biocompatibilidad a las NPM en condiciones fisiológicas. Los autores sugieren que el ingreso de Ca2+ a las células neuronales en desarrollo contribuye a su crecimiento acelerado. Para probar esta hipótesis, se aplicó la estimulación magnetotérmica remota de un canal iónico termosensible, lo que provoca la entrada de Ca2+. La cuantificación de la elongación de los procesos neuronales -las dendritas y el axón- en presencia de NPM disipadores de calor reveló un aumento en el crecimiento después de la estimulación. El estudio in vitro tuvo como objetivo demostrar el potencial de la estimulación magnetotérmica como un medio para acelerar el crecimiento de las células neuronales y ofrecer información sobre el mecanismo que subyace a este efecto.

 

Se espera que la investigación futura se beneficie de la aplicación de esta tecnología in vivo en modelos de trauma.

 

Publicado recientemente en Advanced Functional Materials

No hay comentarios.: